近期发生的充电事故的分析表明,主要是不当快速充电或过充引发电池析锂,导致热失控温度大幅度下降,从219℃下降到107℃,并与电解液剧烈反应,导致电池在107℃发生热失控。
通过实验表征发现,在快充的时候能够明显看出析锂的产生,并通过对析锂机理进行研究,发现了析锂的完整过程,包括电池充电过程负极表面锂析出和重新嵌入,析出过程就是负极零电位之后形成,在电池停止充电之后,电位会恢复到零电位以上,这个时候会重新嵌入,然后所有的可逆锂均完全溶解,负极不再发生反应。
我们对这个机理建立了仿真模型,在常规电池准二维(P2D)模型基础上加入析锂反应的过程,并在此基础上,进行了仿真和验证。从仿真结果看,可以成功模拟充电析锂后电池静置过程中的电压平台,这个平台是重新嵌入的过程。对上述电压平台进行微分处理,可以定量得到整个析锂全过程的时间。以这个时间为一个变量,我们可以建立经验公式计算出析锂量。
在此基础上,我们进行了无析锂安全快充研究。
首先,建立了准二维电化学机理模型,用于预测负极电位,并以此为基础得到最优充电曲线的解析表达式,接着以充电负极定位为一个基准,加一个冗余量,可以推导出电池最优的充电电流。以此为基础,我们可以进行最优充电的控制,以基于模型的负极电位观测器为基础,可以把负极电位观测出来的电位,跟参考电位进行比较,通过调整充电电流使这个电位差趋于零可以实现无析锂的快充。
上述模型会随着电池的衰减,形成误差,模拟结果可能不一定准确。所以,我们在此基础上开发新型的参比电极,直接反馈负极电位,传统参比电极寿命极短,我们开发了新型的参比电极,寿命超过5个月,并且还在继续优化,希望参比电极的使用寿命尽可能延长,真正做到能够作为传感器使用。在没有实现装车传感器应用之前,我们应用于充电算法的标定,可以节省大量时间,因为传统的充电算法标定每次都要拆解观测,应用参比电极之后可以不用拆解,高效率优化充电算法。目前国内公司的充电算法都过于简单,我们跟日产进行过交流,其充电算法是基于大量数据MAP图进行的,所以我们必须也要做好MAP图,使充电算法能够考虑各种各样的影响因素,这个过程的工作量和实验量是非常大的。为了解决这个问题,应用长寿命的参比电极,以此为基础标定出尽量接近于最优充电电流的充电曲线。
注释:本站发布所有游戏信息,均来自互联网,如有侵犯您的权益,请联系我们告知说明,本站将在第一时间内删除。
Copyright 2024-2025 今日新开传奇_新开中变传奇_热血传奇新服网_新开网通传奇网站 All Rights Reserved. sitemap