5月27日,备受关注的围棋人机大战2.0正式落下帷幕,最终柯洁以0:3负于人工智能AlphaGo,结局颇令人意外,却又在很多人的意料之中因为人工智能发展太快了。相比于2016年韩国棋手李世石挑战的AlphaGo1.0版本,今年柯洁的挑战对象升级到了2.0,新的程序一改最初大量学习人类棋谱来提高棋艺的做法,而是可以自学并寻找规律,包括发掘出一些在人类对战中根本不可能使用的招数,再加上超强的计算能力,才最终赢得此次比赛,成为围棋界的上帝。
事实上,除了围棋领域,人工智能在医疗科技、智能家居、物联网平台、自动驾驶等行业的应用也正越来越广泛,越来越深入。特别是自动驾驶,作为未来汽车行业的一大趋势,目前很多企业都在致力于应用人工智能技术实现更高级别的自动驾驶。在此过程中,人工智能逐渐被认为是实现自动驾驶汽车的关键所在,是推动自动驾驶商业化的核心。
然而尽管各方造车势力已经意识到了人工智能对于自动驾驶的重要性,由于核心技术不成熟、相关法律法规不完善、缺乏专业人才等方面的原因,在通过人工智能推动汽车自动化、智能化这条路上,诸多车企和科技公司迟迟没有大的进展,很多仍停留在前期的摸索试验阶段,难以大规模量产。
缺乏核心技术
如同自动驾驶可以分级,人工智能也有等级之分。对于应用于自动驾驶的人工智能技术,目前普遍的意见是将其分为三级:弱人工智能、强人工智能和超人工智能,其中弱人工智能即我们今天看到的AlphaGo、Siri、微软小娜,更多的是充当人类工具的角色,专注于且能解决特定领域的问题;强人工智能为可以在一些领域胜任人类大部分的工作,甚至具备自我意识;超要实人工智能则是比人类还聪明的人工智能系统。而实现自动驾驶,最少要达到强人工智能级别,无人驾驶则需要达到超人工智能级别不仅要理解车内人员的意图,还要时刻观察周边车辆、行人等的运动状态,并对他们的行为做出预测,制定好应对措施,其难度远高于围棋对弈。从这一点来看,目前的技术显然还达不到要求。
众所周知,通过人工智能实现自动驾驶,相当于做一个机器人代替人类开车,那么类比人类驾驶员,这个机器人也需要人类的眼睛大脑和手脚。从这个层面来讲,安装在车上的各种传感器,诸如摄像头、激光雷达、毫米波雷达等就相当于传统驾驶员的眼睛,可以帮助自动驾驶汽车看清周围环境信息,采集路况信息;高效处理芯片相当于大脑,用于进行信息处理,对信息进行分析,以获得下一步决策的依据;最后则是根据结果对车辆进行加速、减速、转向等控制,实现同人类一样的驾驶水准,甚至超过人类驾驶水平,提升驾驶安全性。目前来看,在这四大层面,都存在相关的技术不足。
注释:本站发布所有游戏信息,均来自互联网,如有侵犯您的权益,请联系我们告知说明,本站将在第一时间内删除。
Copyright 2024-2025 今日新开传奇_新开中变传奇_热血传奇新服网_新开网通传奇网站 All Rights Reserved. sitemap